Congruence with Transformations Math Games

3 games

In this series of games, your students will learn that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. The Congruence with Transformations learning objective — based on CCSS and state standards — delivers improved student engagement and academic performance in your classroom, as demonstrated by research. This learning objective directly references 8.G.A.2 as written in the common core national math standards.

Scroll down for a preview of this learning objective’s games and the concepts.

Concepts Covered

Two figures are considered the same if one can be superimposed on the other. Reflections, rotations, and translations, and compositions of these, are called rigid motions. Rigid motions preserve the measurements of angles. Terminology for transformations (image, pre-image, and preserve) is used to describe the effects of rigid motions and other transformations. Two figures in the plane are said to be congruent if they have the same shape and size.

Experiment with translations (sliding a figure in a particular direction for a particular distance), rotations (rotate around a particular point called the center of rotation), and reflections (flipping a point or figure over a particular line called the line of reflection). Use transparencies to experiment with rigid motions. Given two congruent images on a plane in different quadrants, use two transformations to superimpose the pre-image onto the second image. Verify what happens after a figure goes through different transformations. 

A preview of each game in the learning objective is found below.

You can access all of the games on Legends of Learning for free, forever, with a teacher account. A free teacher account also allows you to create playlists of games and assignments for students and track class progress. Sign up for free today!

For Teachers
For Schools
For Districts
Contents